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Abstract

In studies of hydrodynamic turbulence and nonequilibrium systems, it has been demonstrated

that the observed non-Gaussian probability density functions are often described effectively by

a superposition of Gaussian distributions with fluctuating variances. Based on this framework,

we propose a general method to characterize intermittent and non-Gaussian time series. In our

approach, an observed time series is assumed to be described by the multiplication of Gaussian and

amplitude random variables, where the amplitude variable describes the variance fluctuation. It

is shown analytically that statistical properties of the log-amplitude fluctuations can be estimated

using the logarithmic absolute moments of the observed time series. This method is applicable to a

wide variety of symmetric unimodal distributions with heavy tails in order to quantify the deviation

from a Gaussian distribution. By analyzing random cascade-type processes and superstatistical

non-Gaussian models with power-law tails, we demonstrate that our method can provide detailed

characterization in a wide range of non-Gaussian fluctuations.

PACS numbers: 05.40.-a, 02.50.-r, 87.15.Ya, 05.45.Tp
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I. INTRODUCTION

Recently, using statistical tools developed in hydrodynamic turbulence and nonequilib-

rium systems, numerous studies have been conducted to establish universal properties of

intermittent fluctuations in a wide range of complex systems [1–8]. A remarkable prop-

erty of intermittent fluctuations is inhomogeneity of variance, which results in non-Gaussian

probability density functions (PDFs). To characterize such non-Gaussian fluctuations, it

has been demonstrated that non-Gaussian PDFs are often described effectively by a super-

position of Gaussian distributions with fluctuating variances [1, 2].

In the study of the velocity difference between two points in fully developed turbulent

flows, Castaing et al. [1] introduced the following equation:

P (x) =

∫ ∞

0

1

σ
PL

(x
σ

)
G(ln σ) d(lnσ), (1)

where it is assumed that PL is the standard Gaussian distribution and G is a distribution

describing the fluctuation of the standard deviations. Under Kolmogorov’s refined similarity

hypothesis, G is assumed to be an infinitely divisible distribution. In their study, Castaing

et al. focused mainly on the estimation of the variance of G and its scale behavior. This

approach enables us to characterize a wide range of intermittent fluctuations, and has been

applied in diverse fields such as econophysics [3], geophysics [4], and physiology [9]. However,

in the previous studies, the estimation of the variance of G depends on a priori knowledge of

the functional form of G(lnσ) such as log-normality, which would limit the applicability of

this approach. The existing theories on intermittency in developed turbulence have predicted

both shapes of G and scale dependence of its moments [1, 10]. Thus, it is required to develop

a method for determining statistical properties of G from the observed data.

As pointed out by Jung and Swinney [11], equation (1) can be linked with Beck and Co-

hen’s superstatistics [2] that has also been applied to a wide range of nonequilibrium systems

(see, [2] and references therein). In addition, Friedrich et al. provided an exact solution of

a generalized Kramers-Fokker-Planck equation [12], which can be given by superpositions

of Gaussian distributions with varying variances. Hence, a general problem that is of great

interest in experimental applications is how to objectively characterize the variance fluctu-

ations described by G in Eq. (1). To solve this problem, we propose a novel method for

estimating the variance and higher moments of G from the observed time series without
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FIG. 1: Standardized PDFs of log-normal (X(LN)), log-Poisson (X(LP)), and superstatistical

(X(SS)) IID processes with the same log-amplitude variance μ2, where X(LN), X(LP), and X(SS)

are defined by Eqs. (7), (8), and (11), respectively. Solid lines (green): X(SS) with k = 3 (top) and

k = 6 (bottom); dashed lines: X(LP) with λ = 20 and r =
√

μ2/λ; solid lines (black): X(LN) with

α =
√

μ2; dot-dashed lines: X(LP) with λ = 20 and r = −√
μ2/λ. The PDFs are shifted in vertical

directions for convenience of presentation.

assumptions on the shape of G [13]. In other words, we provide a systematic method to

determine the shape of G based on only the observed time series.

Moreover, our method is applicable to a wide range of symmetric unimodal distributions

with heavy tails, including symmetric power-law distributions, P (x) ∼ |x|−α, with 1 < α.

In general, the variance of G in Eq. (1) for a heavy tailed distribution can be interpreted as

a measure of the deviation from a Gaussian distribution.

II. LOG-AMPLITUDE VARIANCE AND HIGHER MOMENTS

To explain our approach, let us assume that an observed stationary time series {xi} with

zero mean is described by a multiplicative stochastic process,

Xi = Wie
Yi , (2)
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where W is a Gaussian random variable with zero mean, and Y is the other random variable

independent of W . In this case, the PDF of X has the same functional form as Eq. (1),

where G(y) is the PDF of Y . Here, we refer to {Yi} as the log-amplitude fluctuation.

To characterize the log-amplitude fluctuation, we consider the variance and higher cen-

tral moments of Y , μn = 〈(Y − 〈Y 〉)n〉, where 〈·〉 denotes the statistical average. By the

calculation of the logarithmic absolute moments of X and the assumption of Eq. (2), we can

obtain the following relations for μn:

μ2 =
〈
(ln |X| − 〈ln |X|〉)2〉 − π2

8
, (3)

μ3 =
〈
(ln |X| − 〈ln |X|〉)3〉 +

7

4
ζ(3), (4)

μ4 =
〈
(ln |X| − 〈ln |X|〉)4〉 − 3

4
π2μ2 − 7

64
π4, (5)

where ζ(n) is the Riemann zeta function (ζ(3) = 1.2020569 · · · ). Note that the logarithmic

absolute moments of X do not depend on the variance of X, because

ln |σ0X| − 〈ln |σ0X|〉 = ln |X| − 〈ln |X|〉 , (6)

where σ0 is an arbitrary constant. Furthermore, we can obtain the estimator of the higher-

order moment, if required.

Our key idea is to use logarithmic absolute moments in order to characterize the non-

Gaussian PDF of X. If logarithmic absolute moments of X are finite, it is possible to define

the log-amplitude moments. Even in the case where the PDF of X has power-law tails,

P (x) ∼ |x|−α, with 1 < α, the logarithmic absolute moments of X are finite, although

the variance of X is undefined or infinite. Therefore, a wide range of symmetric unimodal

distributions with heavy tails can be characterized by our approach. In other words, the

log-amplitude variance μ2 [Eq. (3)] is simply interpreted as the differnce in the second

logarithmic-absolute moment between the observed non-Gaussian and Gaussian PDFs, be-

cause the second logarithmic-absolute moment of a Gaussian distribution equals π2/8. Thus,

μ2 can be used as a measure of the deviation from a Gaussian distribution.

III. NUMERICAL EXAMPLES

To test our approach, we introduce illustrative examples of non-Gaussian stochastic pro-

cesses and carry out numerical experiments.
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A. Independent and identically distributed non-Gaussian variables

As a first step, we consider a stochastic process described by independent and identically

distributed (IID) variables. The first example is a multiplicative log-normal process [14]

based on experimental observations in the study of the turbulent velocity field [1], solar

wind [4], foreign exchange rate [3], stock index [8], and human heartbeat [7, 15]. Neglecting

the detailed structure of the intermittent dynamics, we mimic the PDFs observed in the log-

normal processe. For comparison, we also introduce a multiplicative log-Poisson process.

In the log-normal and log-Poisson processes, fluctuations of the standard deviations are

assumed to obey log-normal and log-Poisson distributions, respectively.

In the log-normal process {X(LN)
i }, the random variableX(LN) with zero mean is described

by

X(LN) = CαWeαY , (7)

where both W and Y are independent standard Gaussian random variables with zero mean

and unit variance, and Cα is a scale parameter. In this process, the non-Gaussian nature is

determined by the parameter α, which is the same as a non-Gaussian parameter λ defined

in Ref. [14]. If X(LN) is standardized, Cα should be chosen as Cα = exp (−α2). In this case,

its log-amplitude moments are μ2 = α2, μ3 = 0 and μ4 = 3α4.

In the log-Poisson process {X(LP)
i }, the random variable X(LP) is described by

X(LP) = CλWerP , (8)

where W are independent standard Gaussian random variables, P are independent Poisson

random variables with mean λ and variance λ, r is a real valued parameter, and Cr is a scale

parameter. If X(LP) is standardized, Cr should be chosen as Cr = exp (−λ (exp(2r) − 1) /2).

In this case, its log-amplitude moments are μ2 = r2λ, μ3 = r3λ, and μ4 = r4λ(1 + 3λ).

The next example is a stochastic process {X(SS)
i } based on so-called superstatistics [2].

Superstatistics considers an inhomogeneous driven nonequilibrium system that consists of

many subsystems with different values of some intensive parameter β (e.g., the inverse

effective temperature). Each subsystem is assumed to reach local equilibrium very quickly.

In this case, if the local equilibrium distribution is Gaussian, we obtain

P (x) =

∫ ∞

0

√
β PL

(√
βx

)
f(β) dβ, (9)

5



where PL(x) is the standard normal distribution and f(β) is the distribution of β. If f(β)

is a log-normal distribution, the PDF of superstatistics has the same form as the above

log-normal process [11].

Here, we choose the χ2 distribution with degree k,

f(β) =
1

Γ (k/2)

(
k

2β0

)k/2

β
k
2
−1e

− kβ
2β0 , (10)

which is one of the universality classes in superstatistics [2]. In this case, equation (9) results

in the Student’s t-distribution, which exhibits power-law tails, P (x) ∼ |x|−(k+1) for large |x|.
In this superstatistical process, the random variable X(SS) is described as

X(SS) = W

√
k

β0Q
(11)

where W are independent standard Gaussian random variables, Q are independent χ2 ran-

dom variables with k degrees of freedom. When k > 2, X(SS) can be standardized by

β0 = k/(k − 2). In Castaing’s description [Eq. (1)], the corresponding G(y) is obtained as

G(y) =
2

Γ(k/2)

(
k

2β0

)k/2

exp

(
−ky − k

2β0
e−2y

)
. (12)

Thus, X(SS) are described as X(SS) = WeY , where Y obey Eq. (12). In this case, its log-

amplitude moments are μ2 = ψ(1)(k/2)/4, μ3 = −ψ(2)(k/2)/8, and μ4 = (3ψ(1)(k/2)2 +

ψ(3)(k/2))/16, where ψ(n)(x) is nth derivative of the Euler’s psi function ψ(x).

It is important to note that the log-amplitude moments μn can be defined for k ≥ 1.

When k = 1, the PDF of X(SS) reduces to a Cauchy distribution,

P (x) =
γ

π (x2 + γ2)
, (13)

where the scale parameter γ is chosen as γ = 1/
√
β0. Because this distribution has power-

law tails, P (x) ∼ |x|−2, for large |x|, its second and higer moments are infinite. On the

other hand, all of the log-amplitude moments μn are finite, which demonstrates that the

log-amplitude statistics is applicable to a variety of heavy tailed distributions.

As shown in Fig. 1, the center parts of the PDFs have similar shapes, if the values of

μ2 are equal. To test the estimators μn, we numerically generate data sets using the above

models, and then estimate the value of μn. To estimate the logarithmic absolute moments,

〈(ln |X| − 〈ln |X|〉)n〉, in Eqs. (3)-(5), here we use the following estimators,

Mn =
1

N

N∑
i=1

(ln |Xi| −M1)
n (n = 2, 3, 4), (14)
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FIG. 2: Estimation of μn for log-normal (X(LN), circles), log-Poisson (X(LP), triangles), and su-

perstatistical (X(SS), squares) IID processes, where λ = 20 for X(LP). The sample means of μn

were estimated from 100 samples of length N = 106. The error bars indicate the sample standard

deviation. The solid lines indicate the theoretical predictions.

where

M1 =
1

N

N∑
i=1

ln |Xi|. (15)

As shown in Fig. 2, the theoretical values are estimated well from the observed time series.

In particular, in the plot of μ3 vs μ2 [Fig. 2 (d)], we find significant differences between

the models, although in the plot of μ4 vs μ2 [Fig. 2 (e)] we find no differences between the

log-normal and log-Poisson processes.

To evaluate the error of the estimate of μn, we study the mean squared error (MSE). The

MSE of an estimator θ̂ of the parameter θ is defined as

ε(θ̂) =

〈(
θ̂ − θ

)2
〉
. (16)
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FIG. 3: Dependence of the mean squared error (MSE) on the data length N . (a) The MSE of μ2

for log-normal (X(LN)), superstatistical (X(SS)), and Gaussian IID processes, where α2 = 0.6 for

X(LN) and k = 1 for X(SS). The averages of the MSE for X(LN) (circles), X(SS) (squares), and

Gaussian variables (diamonds) were computed from 200 samples. (b) The MSE of estimators of μn

for X(LN) with α2 = 0.6. The averages of the MSE of μ2 (open squares), μ3 (filled squares), and

μ4 (crosses) were computed from 200 samples. The solid lines indicate the theoretical predictions

[Eqs. (17) and (18)].

For the estimaotr of μ2 and μ3, the MSEs are evaluated as

ε(μ̂2) =
1

n

(
μ4 − μ2

2 +
π2

2
μ2 +

3

32
π4

)
+O

(
1

n2

)
, (17)

ε(μ̂3) =
1

n

(
μ6 +

15

8
π2μ4 − μ2

3 +
77

2
ζ(3)μ3 +

105

64
π4μ2

+
441

16
ζ(3)2 +

139

512
π6

)
+O

(
1

n2

)
. (18)

The equation (17) implies that the statistical error of the estimate of μ2 does not depend

sensitively on the value of μ2. As shown in Fig. 3 (a), the MSEs ε(μ̂2) for Gaussian and

Cauchy (X(SS) with k = 1) distributions are of the same order, although the value of μ2 for

the Cauchy distribution, μ2 = 1.2337 · · · , is considerably larger than μ2 = 0 for the Gaussian

distribution. This is an advantage of our method compared to moment-based characteri-

zation using 〈|X|n〉. As the order n of μn increases, the MSE ε(μ̂n) rapidly increases. As

shown in Fig. 3 (b), to estimate accurate values of the higher log-amplitude moments, very
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FIG. 4: Time series of log-normal processes. (a) a IID process [Eq. (7)] (α2 = 0.6); (b) a random

cascade process [Eq. (19)] (m = 16, 〈(Y (j) − 〈Y (j)〉)2〉 = 0.6/m).

large data sets are requied.

B. Random cascade-type processes

It is important to note that the characterization of the non-Gaussian PDF at a fixed scale

is not sufficient to provide a deeper insight into intermittent dynamics. For instance, the

time series shown in Fig. 4 (a) and (b) have the same PDF P (x), although the properties

of the variance inhomogeneity are quite different. A standard approach to characterize the

intermittent time series is to describe how the shape of the PDF changes across scales.

That is, from an observed time series {Xi}, consider the PDF of the partial sum ΔsZi =∑s
j=1Xi+j , where s indicates the scale. In other words, ΔsZi is equal to the increment

of the integrated series Zn =
∑n

i=1Xi. On the characterization of the PDF of ΔsZ, the

existing theories have predicted the shapes of G in Eq. (1) and the scale dependence of the

moments [1, 2, 10]. To discuss this point in more detail, we consider intermittent time series

of multiplicative cascade processes.

Recently, we proposed a simple model of the cascade process, as described by Eq. (2)

[14]. The numerical procedure to generate the time series is as follows: First, we generate a

time series {Wi}2m

i=1 of Gaussian white noise with zero mean and variance σ2
0, where m is the

total number of cascade steps. In the first cascade step (j = 1), we divide the whole interval

into two equal subintervals, and then multiply Wi in each subinterval by random weights
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exp[Y (1)(k)] (k = 0, 1), where Y (j) are identical independent random variables. In the

framework of Kolmogorov’s refined similarity hypothesis, the PDF of Y (j) is assumed to be

an infinitely divisible distribution G0(y). In the next cascade step (j = 2), we further divide

each subinterval into two equal subintervals, and apply the random weights exp[Y (2)(k)]

(k = 0, 1, 2, 3). The same procedure is repeated, and after m cascade steps, the time series

{Xi} is given by

Xi = Wi exp

m∑
j=1

Y (j)

(⌊
i− 1

2m−j

⌋)
, (19)

where �·� is the floor function. If the PDF of Y (j) is an infinitely divisible distribution

G0(y), the time series {Xi} is described by the same form of Eq. (2) as Xi = Wi exp Y
(m)

i ,

where Y
(m)

i =
∑m

j=1 Y
(j) and its PDF is given by m-fold convolutions of G0(y). Moreover,

if we approximate the distribution of the local sum of {Xi} by a Gaussian, ΔsnZ at scale

sn = 2m−n is approximately given by ΔsnZ = W
(sn)

exp Y
(sn)

, where W
(sn)

=
∑sn

k=1Wk and

Y
(sn)

=
∑n

j=1 Y
(j).

In the study of developed turbulence, one of the main statistical tools has been the

multiscaling analysis of structure functions [10]. In our notations, the scaling of the structure

functions Sq(s) is described as Sq(s) = 〈|ΔsZ|q〉 ∼ sζq . In our model, the moments of ΔsnZ

at scale sn = 2m−n can be estimated as

〈|ΔsnZ|q〉 ≈
(2σ2

0)
q/2

√
π

Γ

(
q + 1

2

)
emΨ(q)sq/2−Ψ(q)/ ln 2

n (20)

where Ψ(q) is the cumulant-generating function of Y (j). Thus, this model has scaling ex-

ponents ζq = q/2 − Ψ(q)/ ln 2. In this case, the log amplitude variance μ2(s) of ΔsZi is

estimated as

μ2(s) ≈ μ
(0)
2 (N − log2 s) ∼ − ln s, (21)

where μ
(0)
2 is the variance of Y (j). In general, the necessary condition of the existence of

scaling exponents ζq for Ψ(q) 
= 0 is that variance and non-zero cumulants of Y
(s)

are

proportional to − ln s.

Different from the logarithmic dependence, a power-law dependence of μ2(s) has also

been reported in experimental study [1, 4, 8]. As a phenomenological model exhibiting the

power-law dependence, we assume a non-scale-invariant cascade process [16, 17], where the

variance of Y (j) depends on the cascade step j as
〈
[Y (j)]2

〉 ∼ 2γ(j−1). In this case, the scale
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dependence of μ2(s) is estimated as

μ2(s) ≈
[
2γms−γ − 1

2γ − 1

]
μ

(0)
2 ∼ s−γ . (22)

To confirm the theoretical predictions, we numerically study log-normal and log-Poisson

cascade processes, where Y (j) are Gaussian random variables and Poisson random variables

multiplied by a real-valued parameter. A comparison between the log-normal and log-

Poisson processes including an IID time series is shown in Fig. 5. In both cases, the scale

dependences of μ2 agrees well with the theoretical prediction [Fig. 5 (a-d)]. In addition,

the deviation from log-normality is measured by μ3. For the log-normal processes shown in

Fig. 5 (e), the values of μ3 are close to zero across the scales. Note that μ3 of ΔsZ (s > 1)

for the log-normal processes is not exactly equal to zero, because the PDFs of the log-normal

processes is not stable distribution [14]. On the other hand, for log-Poisson processes shown

in Fig. 5 (f), we can see the deviation from μ3 = 0 and the logarithmic dependence of μ3 for

the scale-invariant cascade process [Fig. 5 (f)].

IV. CONCLUSION

We proposed log-amplitude statistics to characterize non-Gaussian time series. Both

turbulence statistics by Castaing el al. [1] and superstatistics by Beck and Cohen [2] have

been very successful in describing non-Gaussian fluctuations. Including such examples, our

method can be used to characterize non-Gaussian fluctuations. A crucial advantage in our

approach is that a priori knowledge of the variance fluctuations is not assumed. The log-

amplitude moments μn can provide a systematic way to quantify the shape of G in Eq. (1).

In addition, even in the case where the non-Gaussian PDF has power-law tails, P (x) ∼
|x|−α, with 1 ≤ α ≤ 2, the the log-amplitude moments can be defined. Hence, our method

is applicable to a wide range of symmetric unimodal distributions with heavy tails.
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FIG. 5: Scale dependence of μ2 and μ3 for scale-invariant cascade (circles), non-scale-invariant

cascade (triangles) and IID (squares) processes, where μ2(1) = 0.6 for all processes, m = 16 for

cascade processes, and γ = 0.5 for non-scale-invariant cascade processes. The left and right panels

show the log-normal and log-Poisson processes, respectively. The variance of Poisson random

variables at s = 1 is λ = 20. The sample means of μn were estimated from 100 samples. The error

bars indicate the sample standard deviation. The solid and dashed lines indicate the theoretical

predictions.
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